
ISRAEL JOURNAL OF MATHEMATICS 86 (1994), 233-252 

THE CONJUGACY VECTOR 
OF A p-GROUP OF MAXIMAL CLASS* 

BY 

ANTONIO VERA-LOPEZ AND GUSTAVO A. FERN.~NDEZ-ALCOBER 

Departamento de Matemdticas 

Facultad de Cieneias. Universidad del Pals Vasco 

Apartado 6~.  Bilbao. Spain 

e-mail: mtpveloa@lg.ehu.es, mtpfealg@lg.ehu.es 

ABSTRACT 

We find the  conjugacy  vector,  i.e., we de te rmine  the  n u m b e r  of conjugacy  

classes which compose  the  sets  of the  e lements  wi th  central izers of equal  

order,  for several  general  families of  p-groups  of max ima l  class which in- 

clude those  of order up to p9. As a consequence,  we ob ta in  the  n u m b e r  of  

conjugacy  classes, r (G) ,  for the  groups  in these  families. Also, we provide 

upper  and  lower bounds  for r (G)  and  character ize  when  they  are a t ta ined .  

Examples  are given showing t ha t  the  bounds  are actual ly  a t ta ined .  

I n t r o d u c t i o n  

I t  is well-known that  a p-group G has maximal class if and only if there exist 

elements with centralizer of order p2 (see [3], p. 375). Moreover, all such elements 

form (p - 1) 2 or p2 _ p conjugacy classes, according as G has degree of eommu- 

tat ivi ty zero or not. In this paper, we pose the more general problem of finding 

all the orders of the centralizers of elements in G and determining the number 

of conjugacy classes which make up each set of elements with centralizers of the 

same order. In the cases we have succeeded in obtaining this information, we 

present it by means of the conjugacy vector of G, V c ,  which is defined below 

with the rest of the notation and terminology. 

* This work has been supported by DGICYT grant PB91-0446 and by the University 
of the Basque Country. 
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In the first section, we first develop the basic tools our method relies on and 

then obtain V c  when G belongs to any of the families G1, ~2 or ~3, i.e., when 

G3 is abelian. On the other hand, in Theorem 14 we prove that,  if IGI = pm, 

c(G) = c and G E ~a then 

pm-2a + (p2 _ 1 ) ( ( a -  1)p c-1 + 1) _< r(G) <_ pm-3  +pC _pC-1 +p2 _ 1 

and we characterize the groups for which each equality holds. We find particularly 

interesting the characterizations in terms of the commutator subgroups of G. 

In the second section we get the conjugacy vector of the p-groups of maximal 

class of order less than or equal to p9. These results are a direct consequence of 

the previous theorems, except for the case when IGI = p9, G3 is not abelian and 

c(G) = c (G /Z (G) ) ,  which requires further reasoning. We also give important 

information about the different types of groups which appear, such as the de- 

gree of commutativity, the maximal normal abelian subgroup or the commutator 

subgroups. 

We would like to underline that some other authors have also considered the 

conjugacy vector of several types of p-groups. This is the case of M. Hall Jr. 

and J. Senior (see [29, and R. James, M.F. Newmann and E.A. O'Brien (see [4]) 

when determining all 2-groups of order up to 128. In [6], J. Poland obtained V a  

for the p-groups of maximal class with r(G) = n(p 2 - 1) +pe,  i.e., with minimum 

conjugacy class number (here, IGI = p2n+e with e E {0, 1}). We completed 

Poland's work in [8] by giving VG for the next smallest possible value of r(G),  

that is, for r(G) = n(p 2 - 1) + p~ + (p2 _ 1)(p - 1). 

Defini t ions  and nota t ion  

Throughout this paper, G will represent a p-group of maximal class of order pm 

(m > 4). Let Gi = [G,.~..,G] for i >_ 2. Then Gin-1 ¢ 1 and G~ = 1 for i _> m. 

If we set Go = G and define G1 by the condition G1/G4 = Ca/a4(G2/G4) ,  it 

follows that IGi : Gi+ll = p for i = 0 , . . . ,  m - 1. The degree of commutativity 

of G, c = c(G), is defined as 

c(G) = max{k _< m -21  [Gi,Gj] _< Gi+j+k for all i , j  >_ 1}. 

Following N. Blackburn (cf. [1]), we take a couple of elements s C G - (G1 U 

CG(Gm-2) )  and sl E G1 - G2, and define recursively si = [si-1, s] E Gi - Gi+l 
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for i = 2 , . . . , m - -  1. For i + j  <_ m - c -  1, let a( i , j )  E Fp be determined by the 

congruence 

~(i,j) (mod Gi+j+c+l). [si, s~] - ~+j+c 

It  is clear that  (~(i, i) = 0 and a( i , j )  = -c~(j, i) whenever defined. Also, we have 

~( i , j )  = ~(i + 1,j)  + (x(i,j + 1) for i + j  < m - c - 2 and Shepherd's product 

formula 

a(i, j )a ( i  + j + c, k) + a(j ,  k )a( j  + k + c, i) + a(k, i)a(k + i + c, j)  = 0 

for i + j + k _< m - 2c - 1 (cf. [7], Lemma 1.6). Another important  property is 

the periodicity a( i ,  j )  = a( i ,  j + p - 1) for i + j < m - c - p. It  follows that  there 

exists at least one j E {2 , . . .  , p -  1} with a ( 1 , j )  ¢ 0. 

We will use the notation G = G/Z(G) ,  and the letter H will stand for any 

maximal subgroup of G, apart  from G1 and CG(Gm-2).  From [1], Lemma 3.1, 

we have that  H is always a p-group of maximal class. Furthermore, Hi = Gi+l 

for every i > 1. 

As in [11], we define the family .~ of the p-groups of maximal class for which 

c(G) ¢ c(G). Also, for a _> 1, we denote by 6a the family of all p-groups of 

maximal  class whose largest abelian normal subgroup is Ga. Clearly, G E Ga 

implies H E Ga-1 for a _> 2. In general, we have c < m - 2a and the equality 

holds for G E ~" (cf. [9], Lemma 1.6). From the definition of the degree of 

commutativity,  [G1, Gi] <_ Gi+c+l always holds. If c < m - 4 and [G1, Gi] <~ 

Gi+c+2 for some i E {3 , . . . ,  m - c - 2}, we say that  G has a jump at G i. From 

[9], Theorem 2.4, a group G E G3 has at most one jump. 

For any subset S of G, we denote by ra(S)  the number of G-conjugacy classes 

which intersect S, that  is, 

ra(S)  = I{Cla(g)t g e G, Cla(g) n S ¢ 0}1. 

In particular, r(G) = re(G) stands for the number of conjugacy classes of G. 

Taking into account Example 1 of [12], we have ra(gGm-1) = ICG(g)I/ICh(9) I 

and, consequently, ra(gGm-1) = 1 or p for any g E G. We note that ,  if H < G 

and N C H is a normal set of G, then IG: HIrG(N ) > rH(g) .  

For each normal set N of G and 2 < i < m, let 

a,(N, C) = I{Clc(g) c NI ICc(g)l = P }I- 
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Calling M the set of the elements of N for which ICa(g)[ = pi, we have 

1 
ai(N, G) = ai(M, G) = r a ( M )  = p--~27-/]{g • g l  ]Ca(g)l = p~}]. 

Then, the conjugacy vector of N relative to G is defined as 

VaN : (am(N, G), a m- l (N ,  G) . . . .  , a2(N, G)). 

Clearly, if N is the disjoint union of two normal sets S and T, then VaN = 

+ 

In some situations, most of the components of V a will be zero. In those 

cases, in order to simplify the notation, we will only write the ai(N, G) values 

which are non-zero and, to know what centralizer order they correspond to, we 

will put that  value into brackets with i as a subscript. For instance, the vector 

( p -  1, 0, 0, 0, 0, 0) will be simply written as (Lv- 117). Also, we will consider two 

conjugacy vectors to be equal if they give the same form after dropping zeros, 

although they may have a different number of components at the beginning. So 

there will be no contradiction in writing equalities such as VaN = V~-, in spite of 

the first vector having one more component than the second. 

The conjugacy vector we obtain by setting N = G is just called the conju- 

gacy vector of G and denoted by VG. Since VG G i n - 1  - -  - -  (~D]m) and Vaa_al -- -- 

([p2 -P]a ,  [ (P -  1)212) or ([p2 -p]2) ,  according as c(G) is zero or not (see [1], p. 64 

and [11], Corollary 2.11), it will be enough to find V a As G1 - G i n - 1  " 

a2(G1 - Gin-l)  = am(G1 - Gin-l ,  G) = 0, we will usually work with the vector 

V~ = ( a m - , ( a l  - Gin- l ,  a ) , . . . ,  a3(al  - C,~-l ,  a )  ) 

rather than with VG. It is clear that,  from the knowledge of V~, we can derive 

as a by-product the number of conjugacy classes of G. In fact, 

2 m-i G r(G) = f p + El=3 a~(G1 - Gm-1, ), if c(G) > 1; 
2 2 rn--1 [ 2p - p + 1 + E =3 a (al - a m - l ,  G), if c ( a )  = 0. 

1. G e n e r a l  r e su l t s  

LEMMA 1: For each g • G, [Ca(9)[ = p,9, where 

#g = l{il 0 < i < m -  1 and Ca(g) N (Gi - Gi+l) ¢ 13}1. 
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Moreover, i fg  6 G1 - Gin-2, then CG(g) = CG1 (g). 

Proof." Since CG, (g)/CG,+I (g) is isomorphic to a subgroup of GJGi+I,  it follows 

that ICG,(g)/CG,+I(g)I = 1 or p, according as CG,(g) - CG,+~(g) = Cv(g) fq 

(Gi - Gi+l) is empty or not. Then, the first part of the lemma follows from the 

factorization 
m - - 1  

ICG(g)l = ICao(~)l = 1-I ICc,(g)/ca,+,(g)l. 
i=0 

Suppose now that g 6 Gi - Gi+l with 1 < i < m - 3. Set G = G/Gi+2. If 

[g,x] = l t h e n i E  Cff(g-') = C~(Gi) = 21, since c(G) > 1. So x 6 G1 and 

cG(~) = c c ,  (~). I 

In connection with this result we have the following lemma. 

LEMMA 2: 

(i) If  i + j <_ m -  c -  1 and [Gi, Gj] = Gi+j~c, then CG(g) n (Gj - G j + I )  = 0 

for every g 6 Gi - Gi+l. 

(ii) I l l  < i < m - e - 2 and [Gi, Gm-c-i-1] = Gin-l,  then ICc(g)l = IC~(ff)l 
for every g 6 Gi - Gi+I .  

Prook (i) Let g E G i - G i + l  and x 6 Gj - G j + I .  We have Gi = (g, Gi+x) 

and Gj = (x, Gj+I). Since [Gi+I, Gj] and [G~, Gj+I] are subgroups of Gi+j+e+l, 

the equality [G~, Gj] = G~+j+c yields [g, x] 6 G~+j+c - Gi+j+c+l. In particular, 

CG(g) n (Gj - Gj+I) = O. 

(ii) As we have just proved, [g, x] 6 Gin_l-{1} for every x 6 a~_o_,_~-a~_o_,. 
Consequently, ra(gGm-1) = 1 and ]Ca(g)] = ra(ga, ,-~)lC¢(g)l  = Icv(g)l.  
| 

Our next result will play an important role when applying inductive methods. 

LEMMA 3: Let N be a normal set of G. 

(i) I f iCa(g)l  = ]Cu(~) I for every g E N,  then V ~  = V ~ .  

(ii) I[ N C_ H and ICa(g)l = ]CH(g)] for every g 6 N,  then VaN = (1/p)V H. 

nroo[: (i) From ]Ca(g)] = ]Co(~)] for g 6 N we derive that a,~(N,G) = o. On 

the other hand, for 2 < i < m - 1, 

1 1 
ai(N,G) = ~ I{g 6 N[ ICa(g)l =p~}[ = ~ [{g 6 N I IC~(ff)l = / } l  

= ai(~,  ~),  
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since rG(gGm-1) = 1 for g E N implies  t ha t  N is a union of cosets  of Gin-1 .  

Consequent ly ,  VCN = V ~ .  

(ii) In  this  case, we jus t  observe t ha t  

ai(N, G) = 1 1 p m - i  I{g E N I ICc(g) l  = Pi}l = ~ I{g ~ NI ICH(g)l = P~}l 

1 
= - hi(N, H)  

P 

holds for 2 < i < m -  1. | 

THEOREM 4: I f  G E J:, then 

j" V ~  + (Lv - 1Ira_l),  i f c  = O; 
V ~  

1. 

Proo~ Fi r s t  of all, we suppose  c < m - 4 and  see t ha t  [Gi, G . . . .  i - 1 ]  ----- Gm-1 
for 1 < i < m - c - 2. In  fact, since c(G) >_ c + 1, we have [Gi, Gj]  < Gi+j+c+l, 

whence [Gi,Gj] < Gi+j+c+l and a ( i , j )  = 0 for i + j  < m -  c -  2. F rom the  

re la t ion  c~(i,j) = a(i  - 1 , j )  - a ( i  - 1 , j  + 1) we derive t ha t  all the  a ( i , j )  wi th  

i + j = m - c - 1 are s imul taneous ly  zero or non-zero.  If  they  were all  zero, 

then  [Gi,Gj] < Gi+j+c+l for all i , j  > 1, con t rad ic t ing  the  defini t ion of c(G). 

Consequent ly ,  a ( i , j )  # 0 and [Gi, Gj] = Gi+j+c -=- Gin-1 for i +  j = m -  c -  1, 

as we wanted  to  prove. 

Now, L e m m a  2 yields ICG(g)] = IC~(tT)l for all  g • G1 - G . . . .  1, and  we 

conclude from L e m m a  3 t ha t  

(i) V c 
G 1 - G  . . . .  i = VCI-G . . . .  i" 

We note  t ha t  th is  equa l i ty  is obviously t rue  when c = m - 2. So it holds for any 

G • ~ .  

We have 

(2) % v v - v c = o , - G  . . . .  o . . . .  . . . .  

Also,  if c = 0 then  

( 3 )  V 5 : V G ,  _ 6 : ~ _  ~ - V ~ , , , _ 2 _ G , , , _  ' - V ~ _ ~ , , , _ ,  - (b - 1 ] m - i ) ,  

and,  if c k 1, t ak ing  into account  t ha t  Gin-c-1 <_ Z(G1) ,  

~' e e -- G (bc- -1  
(4) V 5  = V ~ I _ G  . . . .  1 + V ~  . . . .  1-Gin-2 -- V ~ , _ 5  . . . .  ~ + - 1]m-2). 

Now, the  t heo rem follows from (1), (2), (3) and  (4). | 



Vol. 86, 1994 CONJUGACY VECTOR OF p-GROUPS 239 

Remark:  In particular,  Theorem 4 yields 

= f r ( G ) + p C ( C / - l ( p - 1 ) ,  i f c (G)  > 1; 
r ( G )  [ r(G)  + p(p - 1), if c(G) = 0; 

for G E 5 ~. These equalities are proved in another  way in [11], Theorem 2.10. 

THEOREM 5: Suppose that c(G) <_ m - 4 and [G1, Gj] = Gj+c+l  /'or all j = 

2, . . . , m - c -  2. Then, 

, 1 
% = ~ { % ,  - ( b  c - 11m-2)} + ( [ / - -  l i r a - l ,  b c÷1 -- Vc]c+2). 

Proof: First  of  all, we observe tha t  c > 1. In fact, if c = 0 then [G1, Gj] _< Gy+2 

for 2 _< j < m - 3. It  follows from our hypotheses tha t  m = 4, in contradict ion 

with c = 0. 

Now, let g E G1 - G2. From [G1, (Tj] = Gj+c+l and Lemma 2, we get 

Ca(g)  A ( G 2 -  G . . . . .  1) = 0 .  Since Gr~-c-1 <_ Z(G1)  <_ Ca(g)  and g e 

Ca(g)  N (G1 - G2), we deduce from Lemma 1 tha t  [Ca(g)[ = pC+2. Then 

r a ( G 1 - G 2 ) = [ G 1 - G 2 I / p  . . . . . .  2=pC+1 p C a n d V  a a,-a~ = (b c+1 - ~clc+2). 

Next, take x 6 G2 - G .... I. Let j be such that x 6 Gj - Gj+I. As [GI, Gj] = 

Gj+c+l, we have Ca(g)  • (Ol - G2) : 0 .  Note tha t  x 6 G1 - O,~-2, since c > 1. 

So C a ( x )  = Ca~(x)  = CG2(x) = CH~(X) = C g ( x ) .  From Lemma 3 we derive 

tha t  
v a l v g , _ a _ _ ~  i v . ' , _ .  . . . .  ~. 

G2--am-c-1  = p ~ ~ p 

Now, since c(H)  >_ c + 1, we have Hm-c-U <_ Z(H1)  and 

v H  H ~ - H  . . . .  2 = V H  - -  VH . . . .  = - H - - - a  = V } {  - -  ( [ p C  _ 1 ] m - - 2 ) ,  

what  proves the theorem. | 

We observe that ,  according to Lemma 1.10 of [9], the hypotheses in the previous 

theorem hold whenever c(H)  >_ c + 2. 

T H E O R E M  6: I f G  6 ~1, then V~ = ( [ p m - 2  _ 1 ] m - l )  and r(G)  = pro-2 + p 2  _ 1. 

THEOREM 7: I f G  • ~2, then V b = ([pc--1]m_l, [pm-4-pe-1]m_2, [pc+l-pC]c+2 ) 
and r(G)  = p r o - 4  q_ pc+l  _ pc-1  ..~_ p2 _ 1. 

Proof: From [9], Theorem 2.2, we know that  [G~, Gj] = Gj+~+~ for j _> 2. On 

the other  hand, V ~  = ([pm-a _ 1]m-2), since H • G1. Now it suffices to apply 

Theorem 5 to obtain  V~.  | 
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THEOREM 8: Let G C G3 satisfy [G1, Gj] = Gj+c+l for j = 2 , . . . ,  m - c - 2. 

Then, sctting d = c(H), we have 

V ~  = (~19 c -- 1 ] m _ l ,  [pC'- I  _ pC-1]m_2  ' ~ m - 6  _ pC'-2]m_3 ' ~pC' _ pc ' - l]c ,+2,  

~;)cq-1 _ pC]c_t.2 ) 

and r(G) = pro-6 + pC' _ f ' - 2  + pC+l _ pC-1 + p2 _ 1. 

Proo~ Immediate from Theorems 5 and 7. | 

Our next step will be to find the conjugacy vector of a p-group G C ~3 having 

a jump. With that purpose, in the following lemmas we analyse some of the 

conjugacy vectors of the form Vc~-G,+~ for such a group. We note that,  in this 

case, Theorem 2.4 of [9] yields c(H) = c + 1 and [G2, Gj] = Gj+c+2 for all j _> 3. 

LEMMA 9: Let G C G3 have a jump at G,.  Then CG(g) fq (Gv - Gv+l) ~ 0 for 

all g E G1 - G2 and 

V G __ { ( ~ c + 2  __ pC-t-1]c.t_3), i f  [G1, G1] = Gc+3 or  Go+4;  
vx-v2 - ([pC+3 pC+2]c+4), if[G1, G1] = Go+5. 

Proo~ In this proof we use the results established in [9], Theorem 2.4, about 

the groups G E G3 having a jump. 

Let g E G1 - G2- Since [G1, Gj] = Gj+c+l for 3 < j < m - c - 2 and j ~ v, 

we have CG(g) C (G1 - G2) t_i (G2 - G3) tA (G~ - G~+I) U Gin-c-1. Consequently, 

[Cc(g)l _< pc+a. On the other hand, if G = G/Gv+c+2, then [G1, G.] = 1 and 

(g~Gv < Cff (~ .  Hence ICc(g)l >_ IC~(~I >_ f + 3 .  

Suppose [G1, G1] = [G1, G2] = Go+3 or Go+4. Then [G1, G3] = Go+4 or G~+5, 

respectively, and [G2, G2] = Go+5. It follows that  [g, x] ~ 1 for all x E G2 - G3, 

that is, Ca(g)N(G2-G3)  = 0.  So ICc(g)[ = pC+3 in this case. If [G1, G1] = Go+5 

then 51 _< C(~(g~, whence [CG(g)l = pC+4. | 

LEMMA 10: Let G 6 ~3 have a jump at G,.  Then, the following assertions hold: 

(i) I f v  ---- m --  c -- 2, v G  _G~+I = (~9 c+1 --  pC]re_i ) .  

(ii) I f  3 < v < m - c - 2, V c = ( [ f + l  _ f ] m - 2 ,  [p,~-~-3 _ pr , , - . -4  
- -  G ~ - G ~ + I  

pC + pC-1]m_3). 

Proo~ (i) This is clear, since [G1,Gm-c-2] = 1 yields Ca(g) = G1 for all 

g E G~ - Gv+x.  
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(ii) Suppose tha t  3 _< v < m -  c -  2. If  y • G .  - Gv+l ,  we have G3 _< Cc(y).  

In addit ion,  [G2, Gv] = G.+~+2 # 1 implies CG(y) N (G2 - G3) = 0 .  So Co(g) C_ 

(G,  - G2) u G3 and ICG(g)I = pro-3 or pro-2. Consider the following two sets: 

A = {y • G~ - G . + l t  ICa(y)l = pm-2} 

= {y • a ~  - a~+ l l  Ca(y) n ( a ,  - a2 )  # 0 }  

and 

B = { (x ,y)  c ( v ,  - v 2 )  x (Cv - V v + , ) l  Ix, y] = 1}. 

Count ing the elements  in B in two different ways, we get 

E ICy(x) rl (G,~ - a.+,) l  = ~ ICa(y) n (C, - a2)l 
z6G1  - G 2  y 6 G ~ - G ~ + I  

(5) = ~ ICe(y) n (C, - a2)l. 
y E A  

Since, according to L e m m a  9, CG(x) n (Gv - G~+,) # 0 for all x 6 G ,  - O2, 

we have ICG(x) n (av - Gv+l) l  = ICG, ,  ( x )  - CG.+I(T)I = ( p  - -  l - ) I C G , , + ,  ( x ) l  = 

(p-X)lCm-c-l l  = (p-1)p c+l. Similarly, ICG(y)n(G,-G2)I = ( p - 1 ) I C G 2 ( y ) I  = 

(p - 1)1c31 = (p - 1)p m-3  for all y • A. Hence,  (5) yields IA[ = pC+3 _ pC+2. 

Consequently,  ra(A) = (pC+3 _pC+2)/p2 = pC+, _pC and rG((G~ - G,+l) - A) = 

([Gv - Gv+ll - IA[)/P 3 = pro--v-3 _ pm-V-4 _ pC + pc-l ,  as required. II 

LEMMA 11: Let G • G3 have a jump at G,. Then, 

_ { ([pc+l v G  - PC]c+3), i f  [G,,  a , ]  = Gc+ 3 or Gc+4; 
G2-G3 -- ([pc+2 pC+']c+4), if  [G1, G1] = Gc+5. 

Proof: Since G has a jump,  [G2, Gj] = Gj+~+2 for 3 < j <<_ m - c - 3 .  So CG(g) C_ 

(G1 - G 2 ) U ( G 2  - G 3 ) U G , ~ - c - 2  for every g • G2 - G z .  As g • CG(g)rh(G2-G3), 

we derive t ha t  ICc(g)l = p~+3 or pC+4, according as Cc(g) rq (G1 - G2) is e m p t y  

or not. 

If  [G,,G~] = [G~,G2] = G~+3 or Go+4, arguing as in L e m m a  9 we get 

Ca(g) r') (G1 - G2) = O. Otherwise,  if [G,,  G,]  = G~+5, set t ing G = G/G~+5 we 

have ~ < Ca(~ and ICG(g)l = p~+4. , 

Note tha t ,  if G • G3 and c(G) = 0, then G • 9 c and m = 6. Since G • G2, 

we obta in  V ~  by apply ing  T h e o r e m  4. So we can suppose c(G) _> 1 in the next  

theorem.  
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THEOREM 12: Let  G 6 G3 have a j u m p  at G,  and suppose that  c(G) > 1. Then, 

one of  the following cases holds: 

(i) v = 3 and [Cl ,  a l l  = Go+4. We have 

vb = ([pc _ 1]m-1, [pc+l _/-~]m_~, [p~-6 _ / ]~ -3 ,  [/+2 _/]c+3) 

and r(G)  = pro-6 + p~+2 + / + 1  _ pC _ pC-1 + p2 _ 1. 

(ii) v = 3 a n d  [G1, G1] = Go+5. We have 

v'  [pC+, _ [p..-6 [pC+a G = (~ v~ - 1]m--b pC--1]m--2, - -  p C ] m - - 3 ,  -- pC+l]c+4) 

a n d  r ( G )  = pro-6  + pC+3 _ p ~ - I  + p2 _ 1. 

(iii) 4 < v < m - c - 2 .  We have  

V t G = ([pc llm-1, [pc+l _/-1]m_2, [pm-6 _/]m_3, [/+2 _/1c+3) 

a n d  r (G)  = pro-6  + pC+2 + / + 1  _ pC _ pC-1 + p2 _ 1. 

(iv) v = m - c - 2. We have 

V t G = ( [pc+l  1 ] m - 1 ,  [ p m - 6  _ p C - 1 ] m _ 3  ' [pc+2 _ pC]c+3 ) 

and r (G)  = pro-6  + / + 2  + pC+l _ pC _ pC-1 + p2 _ 1. 

Proo~ We know t h a t  V a a . . . .  1 - a , , - 1  = ([pC _ 1 ]= -1 ) .  So, t a k i n g  in to  accoun t  

the  p reced ing  l emmas ,  it  suffices to d e t e r m i n e  V c for 3 < i < m - c - 2 Gi -Gi+l 
a n d  i # v. For  such a n  i, we have [G1, Gi] = Gi+c+l a n d  CG(g) f3 (G1 - G2) = 0 

for any  g 6 G~ - G i + I .  I f  i = m - c - 2, it  follows t h a t  CG(g) = G2 a n d  

~7G ___ ([pc _ pc-1]m_2) .  If  i < m - c - 2, t h e n  [G2, Gi] -~ Gi+c+2 whence  Gi-Gi+1 
CG(g) = CG3(g) = G3 a n d  V a = (~0 m - i - 3  -- p m - i - 4 ] m _ 3 ) .  II Gi-Gi+t 

Our next goal is to obtain general bounds for the number of conjugacy classes 

of a p -g roup  of  m a x i m a l  class. We  need  the  n e x t  l e m m a .  

LEMMA 13: Suppose that  c(G) < m - 4. Then,  the following formulas hold for 

i + j < m - c - l :  

i--1 
(6) ~(i'J)=Z(-l)k(i-1) 

k=O 
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and 

m--c--i--j--1 

(7) a( i , j )  = Z ( m -  c - k i -  j -  1)c~( i + k , m -  c -  i -  k -  1). 
k=0 

Proof." For the first formula,  proceed by induction on i > 1. To prove (7), use 

induction on r = m - c - i j 1. In bo th  cases, take into account  the relat ion 

a( i , j )  = a(i  + 1 , j )  + c~(i,j + 1). | 

THEOREM 14: Let G E 6a with c(G) >_ 1. Then, 

p ~ - 2 ~  + (p2 _ 1 ) ( ( a -  1)p c-1 + 1) _< r(G) <_ pro-3 +pC _pC-1 +p2 _ 1. 

Proo~ We first deduce the lower bound for r(G). We argue by induction on 

a _> 1. The  case a = 1 is clear from Theorem 6. Suppose a _> 2. Taking into 

account  t ha t  c <_ m - 4, we can decompose  r(G) as follows: 

r( G)  : rG( G - G1) -[- rG( a l  - a 2 )  -Jr- rG( G2 - a . . . .  1) + ra( Gm-c-1) 

(s) = r a ( a l  - a~)  + r a ( a 2  - a m - c - 1 )  + pC + p2 - 1 .  

From [Ca(g)[ __ I(g)Gm-c-l] --~ pC+2 for a l lg  E G1-G2,  we deduce ra (G1-G2)  >_ 

pc+l _ pC. On the other  hand,  ra(G2 - G . . . .  1) >_ (1/p)rH(G2 -- G . . . .  1) = 

(1/p)rH(H1 - H m - c - 2 )  and 

r(H)  = pc + p 2  _ 1 + rH(H1 - Hm-c-2) ,  

because Hm-c-2  <__ Z(H1). Since a(H) = a - 1, the lower bound holds for r(H),  

whence 

ra(G2 - G . . . .  1) >_ pm-2a + (p2 _ 1 ) ( a -  2)p ~-1 - pC-l, 

bear ing in mind tha t  c(H) > c + 1. Now, going back to (8) we obta in  the desired 

bound.  

The  proof  for the upper  bound will require quite a different approach.  If 

c = m - 2 the result is evident.  Hence, we can suppose c _< m - 4 and (8) holds. 

I t  then  suffices to  show tha t  ra(G1 - G i n - c - l )  <_ pro-3 _ pC-1. 

We define 

u = min{ j  _> 21 a ( 1 , m -  c -  j )  ¢ 0}. 
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B y  a p p l y i n g  (6) we ge t  a ( i ,  m - c - u)  = a ( 1 ,  m - c - u)  # 0 a n d  [Gi,  Gin-c-u] = 

G m - . + i  for 1 < i < u - 1. Hence  Ca(g)  n (G1 - G . )  = 13 for  a l l  g ~ G i n - c - .  - 

G r ~ - c - . + l .  So Ca(g)  = G .  a n d  r a ( G m - c _ .  - G . , - c - . + l )  = pC _pC-1 .  

Also,  s ince  ICa(g)l < pro-1 for 9 ~ G ~ - c - = + l  - a m - c - l ,  

r a ( G m - c - u + l  - G i n - c - l )  _< pC+~-2 _ pC. 

Fina l ly ,  le t  g E Gi - C i + I  w i t h  1 < i < m - c - u - 1. I f  ICa(g)l = pro-1 t h e n  

g E Z(G1)  a n d  Gi <_ Z(G1).  T h i s  y ie lds  Gm-c-~, <_ Z(G1),  which  is imposs ib l e .  

Consequen t l y ,  [Ca(g)l <_ p,~-2 for  al l  9 E G1 - G m - c - u  a n d  

rG(GI - Gin-c -u)  < pm-3  _ pC+U-2. 

Now, 

ra(G1 - G i n - c - l )  =rG(G1 - Gin-c -u)  + rG(Gm-c -u  - Gin-c-u+1) 

+ r a ( G m - c - ~ + l  - G i n - c - l )  _< p m - a  _ p C - l ,  

as  r equ i red .  II 

In  t h e  fo l lowing  two  t h e o r e m s  we c h a r a c t e r i z e  t he  g roups  for which  the  b o u n d s  

a b o v e  are  a t t a i n e d .  W e  n o t e  t h a t ,  a c c o r d i n g  to  T h e o r e m  6, r(G) equa l s  the  lower 

b o u n d  for G E ~1- So i t  suffices to  e x a m i n e  the  case  a(G) > 2. 

THEOREM 15: I f  c(G) >_ 1 and a(G) >_ 2, the following assertions are  equivalent: 

(i) r(G) = pm-2a + (p2 _ 1 ) ( ( a  - 1)p c-1 + 1). 

(i i)  [Gi, Gj] = Gi+j+c for  1 < i < a - 1 and i < j <_ m - c - i - 1. 

(ii i)  V ~  = ([pC _ 1 ] m - l ,  [pc _ pC-1]m_i (2<i<a-1) ,  [pm--2a _ pC-1]m_a ' 
[pc+l _ pC]c+j (2<j_<a)). 

Proo~ W e  use i n d u c t i o n  on  a > 2. I f  a = 2 t he  r e su l t  is c lear  f rom T h e o r e m  7. 

I f  (i) holds ,  h a v i n g  a look  a t  the  p r o o f  of T h e o r e m  14, we eas i ly  d e d u c e  t h a t  

ICa(g)l = pC+2 for a l l  g 6 G 1 - -  G2, c(H) = c + 1 a n d  t h a t  H a t t a i n s  the  lower  

b o u n d .  I f  [ G 1 , G j ]  <_ Gj+c+2  w i t h  2 _< j _< m - c - 2, in G = a/aj÷c÷2 we 

have  IC~(g-)l >_ I(9-')Gjl = pc+a,  a c o n t r a d i c t i o n .  Hence  [G1, at] = a j + c + l  for 
2 _< j _< m - c - 2. On  the  o t h e r  h a n d ,  s ince  (i) ho lds  for H ,  t he  i n d u c t i v e  

h y p o t h e s i s  y i e lds  [Hi, Hj] = Hi+j+c(H) = Hi+j+c+t for 1 _< i _< a - 2 a n d  

i < j _< m - c - i - 3. Th i s  a m o u n t s  to  [Gi,  Gj] = Gi+j+c for 2 < i < a - 1 a n d  

i < j _< m - c - i - 1. So we have  p roved  t h a t  (ii) holds .  
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If we now suppose tha t  (ii) is true, Theorem 5 yields 

V '  1 "V '  G ---- p {  H -- ([pC _ 1 ] m - 2 ) }  -t- ([pc _ 1 ] m - l ,  [pc+l  _ pC]c+2). 

We also deduce that  H satisfies (ii) with a(H) = a -  1 and c(H) = c + 1. So (iii) 

holds for H and we obtain the desired value of V~.  

Finally, it is obvious tha t  (iii) implies (i). | 

THEOREM 16: If c(G) >_ 1, the following assertions are equivalent: 
(i) r(G) = pro-3 q_ pC _ pC-1 + p~ _ 1. 

(ii) [Gi,Gj]<_Gm-1 f o r i + j _ < m - c - 1 .  

(iii) d E G1. 

Proof: The  equivalence between (ii) and (iii) is obvious. So we proceed to show 

tha t  (i) and (iii) are equivalent. If c = m -  2 both  of them are true. Suppose then 

c _< m - 4. If G E G1 then G E 5 r and, according to the remark  after Theorem 4, 
r(G) = r ( G ) + p c - l ( p _  1) = p r o - 3  +pC _pC-1 q _ p 2  _ 1. 

Conversely, suppose (i) holds. From the proof  of Theorem 14, we must  have 

ICc(g)l  = pro-2 for any g ~ Gx - a2 .  I t  follows tha t  ~ (X, j )  -- 0 for every 

j ¢ m - c - u .  In particular,  m - c - u  < p - l ,  since there is at least one 

j E {2 , . . .  , p -  1} such tha t  a ( 1 , j )  ~ 0. Write m - c - u  = 2i+e with e ~ {0, 1}. 

If u > 3, then (6) yields 

i 

O = a ( i + l , i + l ) = E ( - 1 ) k ( ~ ) a ( 1 , i + k + l )  
k=O 

(:) o~(1, m - c - u), = ( -1 ) i+e -1  1 e 

whence a(1,  m -  c - u )  = O, a contradiction. Consequently, u = 2 and a(1,  j )  = 0 

for 2 _< j < m - c - 3 .  We deduce from (6) tha t  a(i,j) = 0 and [Gi, Gj] < 
Gi+j+c+l whenever i+ j  <_ m - c - 2 .  Hence c(G) > c + l  and G C 9 r .  Arguing as 

in the proof  of Theorem 4, we get ICc(t~)l = ICG(g)I = pm-2 for all g e G1 - G2. 

So G1 is abelian and G C ~1- | 

2. T h e  c o n j u g a c y  v e c t o r  fo r  IGI _< p9 

In this section, we determine the conjugacy vector for the p-groups of maximal  

class of order < p9. If a(G) < 3 and c(G) > 1, we obtain V~ directly from 



246 A. VERA-LOPEZ AND G. A. FERNANDEZ-ALCOBER Isr. J. Math. 

Theorems 6, 7, 8 or 12. If c(G) = 0 then G E 5 r and we can apply Theorem 4, 

Also, for IGI = p9 and G C 64, we will use ad for which we need to know V~. 

hoc arguments which rely on the knowledge of the conjugacy vector of G. So, 

in these cases, our method will be recursive. The mere listing of the different 

conjugacy vectors for every group order would lead us to the following problem: 

when dealing with a specific group G, what is the correct choice of V ~  among all 

the possible values? For this reason, together with V~,  we will provide a series 

of supplementary invariants such as c(G), a(G), the jumps G may have and the 

commutator  [G1, 61] = G~, which will precise the structural differences among 

groups with different conjugacy vectors. This will help us to identify V ~  when 

trying to find the conjugacy vector of a group of larger order. Besides, we assign 

each group type a number and, together with the above-mentioned invariants, 

we give the type numbers of G and H in our lists. In this way, searching through 

the tables below, we are able to determine all t;he commutator  subgroups [Gi, Gj] 

for any group G of order < p9. This knowledge will sometimes be useful when 

applying recursion. 

THEOREM 17: If  G has order less than or equal to p9, then one of the cases listed 

in Tables 1, 2, 3 and 4 below holds. 

Proo~ As already mentioned, if a(G) < 3 and c(G) > 1, or if G e .~, the result 

is immediate. We just have to take into account that  2c > m - 6 for G E 63 
(cf. [10]), whence there do not exist groups belonging to 63 with IGI = p9 and 

c(G)  = 1. 

So we only need to study the case when IGI = pg, G E 64 and G ~ .~. Then 

we have c(G) = c(G) = 1, H • 63, c(H) = 2 and [G3, G4] = Gs- We note that  

p _> 7 in this case, according to Theorems 3.13 and 3.14 of [1]. Also, since G ¢ ~-, 

there exist i , j  such that  i + j _< 6 and a( i , j )  ~ O. It  follows that  a(1 ,2)  and 

a(2, 3) can not both be zero. 

Set a(3 ,4)  = x ¢ 0, a(2 ,5)  = y a n d a ( 1 , 6 )  = z. From relation (7) we get 

a(1 ,2)  = a(1 ,3)  = z + 3y + 2x, a(1 ,4)  = z + 2y + x, a(1 ,5)  = z + y and 

a(2, 3) = a(2, 4) = y + x. By applying Shepherd's product formula to the triple 

(1, 2, 3) we obtain that  

(9) (z + 3 y  + 2 x ) ( x -  y) + = 0. 

If (~(2,3) = 0 then x -  y ~ 0 and we deduce that  ~(1,2) = z + 3y + 2x = 0, a 



Vol. 86, 1994 CONJUGACY VECTOR OF p-GROUPS 247 

contradict ion.  Consequently,  a (2 ,3 )  = a ( 2 , 4 )  ¢ 0, whence [G2,G3] = G6 and 

[G2, G4] = G7. 

Now, we consider four cases: 

(i) a (1 ,  6) = a(2 ,  5) = 0. 

In this case, (9) yields 2x 2 = 0, which is impossible.  

(iX) a(1 ,  6) ¢ 0, a(2 ,  5) = 0. 

T h a t  is, [G1,G6] = Gs and [G2, Gh] = 1. From (9) we have z = - x .  Thus  

[G1,G2] = G4, [G1,G3] = G5 and [Ga,G4] = [Ga,Gh] = G7. Now, s traight-  

forward calculat ions show tha t  G belongs to group type  no. 64. 

(iii) a(1 ,  6) = 0, a (2 ,  5) # 0. 

This  amoun t s  to [Gx, G6] = 1, [G2, Gh] = Gs. It  follows f rom L e m m a s  2 and 3 

tha t  Vaa2-G6 = V~a2_a6 - V~' - V~al_c2 - ( ~ v -  117). Also, C a ( g )  = G1 for all 

g E G6 - G8, whence V G a~-a8  = ([p2 _ 1]s). 

According to (9), we have (3y + 2x) (x  - y) = 0. If  x - y = 0 then  a ( 1 , j )  ~ 0 

for 2 _< j _< 5. Thus  G corresponds to group type  no. 27 and it is easily checked 

tha t  V ~  = (p2 _ 1 , 0 , p -  1,p 2 - 1,p 3 - p , 0 ) .  

If 3y + 2x = 0 then  a ( 1 , 2 )  = a (1 ,3 )  = 0, a (1 ,4 )  ~ 0 and a ( 1 , 5 )  ~ 0. Hence 

[G1,G2] = Gh+~ with  ~ = 0 or 1, [G1,G3] = [G1,G4] = G6 and [G~,Gh] = GT. 

Since G E 63, L e m m a  9 yields ]C~(tT)l = p4+e for all g C G1 - G 2 .  Consequently,  

ICG(g)I = p4+~ or ph+e. Let 

and 

A = {g e G1 - G2I ICc(g)l = p4+~} 

B = {9  e V l  - V21 ICc (9 ) l  = 

Sett ing IA[ = A1 and IBI = A2, we have tha t  

A1 + A2 ---- [G1 - G2[ = p8 _ pT, 

-}- ~ =~ rG 1 (G1 - G2) -= ( p -  1)rG1 (SlG2). 

Taking into account  the proof  of Theorem 3.4 of [9], it follows tha t  re1 (s lG2)  = 
p3+e + p3 _ p2. Thus  

{pS  { pr _ p6, if ¢ = O; A1 = _ 2p7 + p6, if e = 0; and A2 = 
pS p 7 _ p 6 + p h ,  i f e = l ;  p ~ _ p h ,  if e = l .  

F rom these values we obta in  cases 66 and 67 in Table 4. 
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( iv)  a ( 1 ,  6) ¢ O, a ( 2 ,  5) ¢ 0. 

S ince  [G1, G6] = [G2, Gs] = [G3, G4] = G8, we have  V GG1 _ a  7 = ~ 7~al_e 7 - -  V ~ . !  

I f  e i t h e r  of  a ( 1 ,  3) or  a (1 ,  4) equa l s  zero,  we der ive  a c o n t r a d i c t i o n  f r o m  (9). So 

we have  cases  68 or  69. II 

In  t h e  fo l lowing  tab les ,  for s o m e  g r o u p  types ,  t h e  e n t r y  c o r r e s p o n d i n g  to  t h e  

j u m p s  of  G is G E ~' .  We  obse rve  t h a t  th is  impl ies  t h a t  al l  t h e  j E { 3 , . . . ,  m - 

c - 3} a re  j u m p s  in t h a t  case. 

T A B L E  1. C o n j u g a c y  vec to r  for ]G[ < p6 

No. [a] c ( a ) [ a ( G )  O no. H no. Jump(s) G~ V~ 

1 ¢ 2 1 - - - 1 (p2 _ 1) 

2 p~ 3 1 1 1 - 1 (p3 _ 1, 0) 

3 p5 1 2 1 1 - G4 ( p -  1,p ~ - 1) 

4 p6 4 1 2 2 - 1 (p4 _ 1, O, 0) 

5 p~ 2 2 2 2 - a ~  ( p ~ - l , p 3 - p , 0 )  

6 p6 1 2 3 2 - G4 ( p - l , p 2 - 1 , p 2 - p )  

7 p6 0 3 2 3 G • 5 t" G5 ( p -  1, p3 _ 1,0) 

8 p8 0 3 3 3 G • ~" G4 (p - 1, p -  1, p2 _ 1) 

T A B L E  2. C o n j u g a c y  vec to r  for lal = p7 

No. c(G) a(G) G no. H no. Jump(s) G~ V~ 

9 5 1 4 4 - 1 (p5 _ 1,0,0,0) 

10 3 2 4 4 - G6 (pa _ 1,p4 _ p2,0,0 ) 

11 2 2 5 4 - G5 (p2 _ 1,pa _p, p3 _p2,0  ) 

12 1 2 6 4 - G4 ( p -  1,p 3 - 1,0,p 2 - P )  

13 1 3 6 5 - G4 ( p - l , p - l , p 2 - 1 , p 2 - p )  

14 1 3 5 5 G3 G5 ( p -  1,p 2 - 1,p 3 - p , 0 )  

15 1 3 4 5 G3 Gs ( p -  1,p 4 - 1,0,0) 

16 1 3 6 5 G4 G4 (p2 _ 1,0,p3 _ 1,0) 

T A B L E  3. C o n j u g a c y  vec to r  for IG[ = pS 

No. c(G) a(G) (~no. H no. Jump(s) G~ V~ 

17 6 1 9 9 - 1 (p~ - 1,0,0,0,0) 

18 4 2 9 9 - Gr (p4-1,pS-p3,0,O,O) 
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No. c(G) 

19 3 

20 2 

21 1 

22 2 

23 2 

24 2 

25 2 

26 1 

27 1 

28 1 

29 1 

30 1 

31 1 

32 0 

33 0 

34 0 

35 0 

36 0 

37 0 

38 0 

39 0 

T A B L E  3 ( c o n t . ) .  C o n j u g a c y  v e c t o r  fo r  IGI = pS 

a(G) G no. H no. Jump(s )  

2 10 9 - 

2 11 9 - 

2 12 9 - 

3 11 10 - 

3 I0 i0 G3 

3 9 10 G 3  

3 11 10 G4 

3 12 10 - 

3 13 11 - 

3 14 11 G3 

3 15 11 G3 

3 16 11 G4 

3 13 11 G5 

4 9 15 G 6 . T "  

4 10 15 G 6 ~ "  

4 11 15 G 6 5  r 

4 12 15 G 6 5  ~ 

4 13 14 G 6 5  v 

4 14 14 G6}- 

4 15 14 G 6 ~ "  

4 16 14 G 6 ~  

a l  % 

G6 (p3 _ 1, p4 _ p2, p4 _ pS, 0, 0) 

G5 (p2 _ 1,1)4 _p,O,p3 _ p 2  0 ) 

G4 ( p - l , p 4 - 1 , O , O , p 2 - p )  

G5 (p2 _ 1,p2 _p, p3 _p,  p3 _ p 2 , 0  ) 

G~ ( ~  - 1 , / - p , ¢  - p~,0 ,o)  

G7 (p2 _ 1, p5 _ p, 0, 0, 0) 

G5 (p3 _ 1,0,p4 -- p, 0 ,0)  

G4 ( p -  1,p= - 1,p~ - p , 0 , p :  - p) 

G4 ( p -  l , p -  l , p 2 - 1 , p 2 - p ,  p 2 - p )  

G5 (p - 1, p2 _ 1, p2 _ p, p3 _ p, O) 

Gs ( p -  l,p2 -1,p4 - p,O,O) 

G4 (p_ 1,p~ _ 1,p2 _p,  pZ -p,O) 

G4 (p2 _ 1,0,p2 _ 1 , p 3  - p , 0 )  

G7 ( p -  1 ,p  5 - 1 ,0 ,0 ,0 )  

G6 ( p -  1 ,p  3 - 1 ,p  a - p2 ,0 ,0 )  

G5 ( p _  1,p2 _ 1,p3 _p, p3 -p~,O) 

G4 ( p -  1 , p -  1 ,p  a - 1 , 0 , p  2 - p )  

Ga ( p -  1 , p -  1 , p -  1 ,p  2 - 1 ,p  2 - p )  

G5 ( p -  1 , p -  1 ,p  2 - 1 ,p  3 - p , 0 )  

G¢ ( p -  1 , p -  1 ,p  4 - 1 ,0 ,0)  

Ga ( p -  1 ,p  2 - 1 , 0 , p  3 - 1,0) 

T A B L E  4. Conjugacy  vector  for [G] = p9 

No. c(G) a(G) (~no .  H no. Jump(s )  

40 7 1 17 17 - 

41 5 2 17 17 - 

42 4 2 18 17 - 

43 3 2 19 17 - 

44 2 2 20 17 - 

45 1 2 21 17 - 

46 3 3 19 18 - 

47 3 3 18 18 G3 

1 (p7 _ 1 , 0 , 0 , 0 , 0 , 0 )  

Gs ( ¢  - 1,p s - ¢ , 0 , o , o , 0 )  

G7 (p4 - 1,pS - pS,p5 - p4 ,0 ,0 ,  0) 

G6 (pS _ 1, p5 _ p2, 0, p4 _ pa, 0, 0) 

G~ (p~-  1 , ¢  - p , o , o ,  v S -  p~,o) 

Ga ( p -  1 ,p  s - 1 ,0 ,O,O,p 2 - p )  

67  (p3 _ 1,p4 _ p 2 , p 5  _ p 3  0 , 0 , 0  ) 
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T A B L E  4 (con t . ) .  C o n j u g a c y  v e c t o r  for  ]G ! = p9 

No. c(G) a(G) G no. H no. Jump(s) 

48 3 3 17 18 G3 

49 3 3 19 18 G4 

50 2 3 20 18 - 

51 2 3 22 19 - 

52 2 3 23 19 G3 

53 2 3 24 19 G3 

54 2 3 25 19 G4 

55 2 3 22 19 G5 

56 1 4 17 24 G E5 ~ 

57 1 4 18 24 G E .~  

58 1 4 19 24 G E .~  

59 1 4 2O 24 G E~-  

60 1 4 22 23 G E ~  

61 1 4 23 23 G E.T" 

62 1 4 24 23 G E5 r 

63 1 4 25 23 G E~" 

64 1 4 30 25 G4 

65 1 4 27 22 G6 

66 1 4 28 22 G3, G6 

67 1 4 29 22 G3, G6 

68 1 4 27 22 - 

69 1 4 31 22 G5 

a~ v~ 
(p3 _ 1,p6 _ p2,0,0,0,0 ) 

(p4  _ 1,0,p5 _ p2,0,0,0 ) 

Gs 

G6 

G5 (p2 _ 1,p3 _p ,  p4 _p2,0,p3 _ p 2 , 0  ) 

G5 (p2 _ 1,p2 _p ,  p3 _p ,  p3 _p2 p3 _p2 ,0  ) 

G6 (p2 _ 1,p3 _p ,  p3 _p2,p4 _ p2,0,0 ) 

G7 (p2 _ 1, p3 _ p, p~ _ p2, O, 0, 0) 

G5 (p2 _ 1, p3 _ p, p3 _ p2, p4 _ p2,0, 0) 

G5 (p3 _ 1, 0, p3 _ p, p4 _ p2,0, 0) 

Gs ( p -  1,p ~ - 1,0,0,0,0) 

( p -  1,p 4 - 1,p 5 - p 3 , 0 , 0 , 0 )  G~ 

G6 ( p _  1,p3 _ 1,p4 _p2,p4 _ p3,0,0 ) 

G5 ( p -  1,p 2 - 1,p 4 - p , O , p  3 -p2 ,0 )  

G5 (p _ 1,p2 _ 1,p2 _ p, p3 _ p, p3 _ p2,0 ) 

G6 ( p _  1,p2 _ 1,p3 _p ,  p4 _ p 2 , 0 , 0  ) 

G7 ( p -  1,p 2 - 1,p 5 - p ,  0,0,0) 

( p -  1,p 3 - 1,0,p 4 - p , 0 , 0 )  G5 

G4 ( p _  1,p2 _ 1,p2 _p ,  p3 _p ,  p3 _ p2,0 ) 

G4 (p2 _ 1 , 0 , p -  1,p 2 - 1,p 3 - p ,  0) 

Gs (p2 _ 1,0,p2 _ 1,p3 _p ,  p3 _ p 2 , 0  ) 

G6 (p2 _ 1, 0,p a - 1,p 4 - p2, 0, 0) 

G4 ( p -  I , p -  I , p -  I,p2 - 1 , p 2  - p, p2 - p) 

G4 ( p -  1,p 2 - 1,0,p ~ - 1,p 3 - p ,  0) 

3.  E x a m p l e s  

W e  e n d  t h i s  p a p e r  p r o v i d i n g  t w o  e x a m p l e s  w h i c h  s h o w  t h a t  t h e  b o u n d s  for  r ( G )  

e s t a b l i s h e d  in  T h e o r e m  14 a r e  a c t u a l l y  a t t a i n e d .  Also ,  we give  a g e n e r a l  e x a m p l e  

of  a p - g r o u p  of  m a x i m a l  c lass  of  o r d e r  p9 f r o m  w h i c h  i t  c a n  b e  d e r i v e d  t h e  

e x i s t e n c e  of  g r o u p s  for  e v e r y  t y p e  l i s t e d  in  T a b l e  4, b y  j u s t  g i v i n g  v a l u e s  to  t h e  

p a r a m e t e r s  in  t e r m s  of  w h i c h  t h e  g r o u p  is p r e s e n t e d .  

E x a m p l e 1 :  L e t p >  5 b e a p r i m e .  F o r 5  < m < p a n d c E  { 1 , . . . , m - 4 } U  

{ m  - 2}, c < p - m + 2, B .A .  P a n f e r o v  c o n s t r u c t s  in  [5] a p - g r o u p  of  m a x i m a l  

c lass  G of  o r d e r  p '~ ,  d e g r e e  of  c o m m u t a t i v i t y  c a n d  s u c h  t h a t  [G~, Gj] = G~+j+c 
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for 1 < i < j .  It  follows tha t  this group satisfies condit ion (ii) of Theo rem 15 

with a = [(m - c)/2]. 

E x a m p l e  2: Let p _> 3 be a pr ime number  and c :> 1 a fixed integer. Then,  for 

every m ~ c (mod 2) satisfying c + 4 _< m _< c + p + 1, there exists a p-group of 

max imal  class G such tha t  IG[ = pro, c(G) = c and G E g i .  

In fact, writ ing m = 2n + c, we can present  this group as G = <s, si[ i > 1 / 

subject  to the following relations: 

(R1) si = 1 for i >_ m. 
1 P ITP-- S(k+i) (R2) s p = l a n d i i k = o  i+k = l f o r i _ >  1. 

(R3) [si, s] = s i+l  for i _> 1 and [si, sj] = ~,,~-l~(-1)J('~--J~')(~-~--ii) for 1 _< j < i. 

We note tha t  we work with generalized binomial  coefficients, tha t  is, for any 

r, s E Z, 
r ( r - 1 ) . . . ( r -  s + l)  

1, if s = 0; 
0, i f s  < 0. 

( : )  < 0 or 0 < r < a so 

1, according as r < s or r > s. 

(;:) - = 0 o r  

E x a m p l e &  S u p p o s e p >  l l i s a p r i m e .  L e t a , ~ , % 5 , s , ) ~ , # , v a n d T b e a r b i t r a r y  

elements  of the field Fp subject  to the condit ion 7-(,~ + 2a)  = 3A 2. Then,  the 

following relat ions define a p-group of max ima l  class G = <s, s i  . . . . .  S s / o f  order 
p9: 

P l f o r  1 < i < 8 .  (R1) s p = s i = 

(R2) [si, s ] = / s i + l '  i f l < i < 7 ;  
1, i f / =  8. 

% 

(R3) [s2, si] . . . .  Z o~o~o~ ~ Z-~ ~ - ~ - ~  ~ - -+ (~+Z) (~ -~ ) -~ ,  0405060708 , [83,81] ~ 8586 87 88 
_a--X ~fl--#--2X '7--v--2p+v+a('r--2X) oa-2X oI3-2~-3A4-2T 

[~, s~] = s~  - ~ + ~ .  

(R4) [s3, s2] o~ o" o~ ~-~ ° 6 ° 7 ° s ,  [s4, s2] °~°"-~ = = ° 7 ° s  , [ s ~ , s 2 ] = s s  • 
(Rh)  [ s 4 , ~ ]  = s~.  

(R6) The  rest of the c o m m u t a t o r  relat ions are trivial.  
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