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ABSTRACT
We find the conjugacy vector, i.e., we determine the number of conjugacy
classes which compose the sets of the elements with centralizers of equal
order, for several general families of p-groups of maximal class which in-
clude those of order up to p?. As a consequence, we obtain the number of
conjugacy classes, r(G), for the groups in these families. Also, we provide
upper and lower bounds for 7(G) and characterize when they arc attained.

Examples are given showing that the bounds are actually attained.

Introduction

It is well-known that a p-group G has maximal class if and only if there exist
elements with centralizer of order p? (see [3], p. 375). Moreover, all such elements
form (p — 1)2 or p? — p conjugacy classes, according as G has degree of commu-
tativity zero or not. In this paper, we pose the more general problem of finding
all the orders of the centralizers of elements in G and determining the number
of conjugacy classes which make up each set of elements with centralizers of the
same order. In the cases we have succeeded in obtaining this information, we
present it by means of the conjugacy vector of G, V¢, which is defined below
with the rest of the notation and terminology.
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In the first section, we first develop the basic tools our method relies on and
then obtain Vi when G belongs to any of the families G;, G2 or Gs, i.e., when
Gjs is abelian. On the other hand, in Theorem 14 we prove that, if |G| = p™,
¢(G)=cand G € G, then

PP+ - D@D+ ) < (@) <pm P4t —p 4 pP -0

and we characterize the groups for which each equality holds. We find particularly
interesting the characterizations in terms of the commutator subgroups of G.

In the second section we get the conjugacy vector of the p-groups of maximal
class of order less than or equal to p®. These results are a direct consequence of
the previous theorems, except for the case when |G| = p®, G3 is not abelian and
¢(G) = ¢(G/Z(G)), which requires further reasoning. We also give important
information about the different types of groups which appear, such as the de-
gree of commutativity, the maximal normal abelian subgroup or the commutator
subgroups.

We would like to underline that some other authors have also considered the
conjugacy vector of several types of p-groups. This is the case of M. Hall Jr.
and J. Senior (see [2]), and R. James, M.F. Newmann and E.A. O’Brien (see [4])
when determining all 2-groups of order up to 128. In [6], J. Poland obtained Vg
for the p-groups of maximal class with r(G) = n(p? — 1) + p®, i.e., with minimum
conjugacy class number (here, |G| = p?"*¢ with e € {0,1}). We completed
Poland’s work in [8] by giving V¢ for the next smallest possible value of r(G),
that is, for 7(G) = n(p? — 1) + p* + (p* - 1)(p - 1).

Definitions and notation
Throughout this paper, G will represent a p-group of maximal class of order p™
(m > 4). Let G; = [G,-?-,G] fori > 2. Then G,,_1 # 1 and G; =1 for i > m.
If we set Go = G and define G; by the condition G1/G4 = Cg/5,(G2/G4), it
follows that |G; : Giy1| = p for i = 0,...,m — 1. The degree of commutativity
of G, ¢ = ¢(G), is defined as

¢(G) = max{k <m —2|[G;,G;] < Giyjpx forall i, > 1}.

Following N. Blackburn (cf. [1}), we take a couple of elements s € G — (G, U
C6(Gm-2)) and s; € Gy — Ga, and define recursively s; = [s;—1,5] € G; — Giy1
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fori=2,...,m-1. Fori+j <m—c-1,let a(i,j) € F, be determined by the
congruence

[si,85) = 82077 (mod Gigjpern)-
It is clear that a(i,7) = 0 and a(i, j) = —a(j, i) whenever defined. Also, we have
a(t,j) = a(i+1,7) + a(i,j+1) for i + § < m — ¢ — 2 and Shepherd’s product

formula
a(i,j)a(i+j + ¢ k) + a(j, k)a(j + k + ¢,i) + a(k, i)k + i+ ¢,j) = 0

fori+j+k<m-—2c—1 (cf. [7], Lemma 1.6). Another important property is
the periodicity a(i,j) = a(i,j+p—1) for i+ j < m—c—p. It follows that there
exists at least one j € {2,...,p— 1} with a(1,7) # 0.

We will use the notation G = G/Z(G), and the letter H will stand for any
maximal subgroup of G, apart from G, and Cg(Gy,—2). From (1], Lemma 3.1,
we have that H is always a p-group of maximal class. Furthermore, H; = G;41
for every ¢ > 1.

As in [11], we define the family F of the p-groups of maximal class for which
¢(G) # ¢(G). Also, for a > 1, we denote by G, the family of all p-groups of
maximal class whose largest abelian normal subgroup is G,. Clearly, G € G,
implies H € G,—1 for a > 2. In general, we have ¢ < m — 2a and the equality
holds for G € F (cf. [9], Lemma 1.6). From the definition of the degree of
commutativity, [G1, G;] < Gitct1 always holds. If ¢ < m — 4 and [Gy, Gy <
Gitoyo for some i € {3,...,m — ¢ — 2}, we say that G has a jump at G;. From
[9], Theorem 2.4, a group G € G3 has at most one jump.

For any subset S of G, we denote by rg(S) the number of G-conjugacy classes

which intersect S, that is,

ra(S) = {Clalg)l g € G, Cla(g)n S # D}

In particular, r(G) = r¢(G) stands for the number of conjugacy classes of G.
Taking into account Example 1 of [12], we have r¢(gGm-1) = |Cs(9)|/|Cz()|
and, consequently, rG(gGm—1) = 1 or p for any g € G. We note that, if H < G
and N C H is a normal set of G, then |G : H|rg(N) > ry(N).

For each normal set N of G and 2 <1< m, let

a;(N,G) = |{Cla(g) C N||Cgs(g)| = p'}I.
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Calling M the set of the elements of N for which |Cg(g)| = p, we have

1 .
a;i(N,G) = a;(M,G) =rg(M) = pre {g € N||Cc(g)| =p*}.
Then, the conjugacy vector of N relative to G is defined as
VS = (am(N,G),am-1(N,G),...,a2(N,G)).

Clearly, if N is the disjoint union of two normal sets S and T, then V§ =
v§ + V§.

In some situations, most of the components of V§ will be zero. In those
cases, in order to simplify the notation, we will only write the a;(N, G) values
which are non-zero and, to know what centralizer order they correspond to, we
will put that value into brackets with i as a subscript. For instance, the vector
(p—1,0,0,0,0,0) will be simply written as ([p — 1]7). Also, we will consider two
conjugacy vectors to be equal if they give the same form after dropping zeros,
although they may have a different number of components at the beginning. So
there will be no contradiction in writing equalities such as V§ = V%, in spite of
the first vector having one more component than the second.

The conjugacy vector we obtain by setting N = G is just called the conju-
gacy vector of G and denoted by V. Since V& = ([plm) and VE_g, =
([p? = pls, [(p—1)?]2) or ([p? — p2), according as ¢(G) is zero or not (see [1], p. 64
and [11], Corollary 2.11), it will be enough to find V§ _, . As
a2(G1 — Gm-1) = am(G1 — Gm—1,G) = 0, we will usually work with the vector

g = (@m-1(G1 = Gm-1,G),...,a3(G1 — Gm_1,G))

rather than with V. It is clear that, from the knowledge of Vi, we can derive
as a by-product the number of conjugacy classes of G. In fact,

r(G) = {p + ¥ ailG ~ G- I,G), if ¢(G)
2p? —2p+1+21 s al(Gl Gm-1,G), ifc(G)

1

1
0.

n v

1. General results

LEMMA 1: For each g € G, |Cg(g)| = p*¢, where

tg = {il 0 <i<m—1and Cg(g) N (G; — Giz1) # O}
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Moreover, if g € Gy — Gp—2, then Cg(g) = Ce,{9).

Proof: Since Cg,(g)/Caq.,,(g) is isomorphic to a subgroup of G;/Gi41, it follows
that |Cg,(9)/Caiy.(9)l = 1 or p, according as Cg,(¢9) — Ca,,,(9) = Ce(g) N
(Gi — G;i41) is empty or not. Then, the first part of the lemma follows from the

factorization
m—1

lCG(g)l = ICGo(g)| = H |CGi(g)/CGi+1(g)"
=0
Suppose now that g € G; — Gi4y with 1 < i < m —3. Set G = G/Giyp. If
[9,2] = 1 then T € Cx(9) = C&-(éi) = G, since ¢(G) > 1. So z € G; and
Col(z) = Cg, (z). | |

In connection with this result we have the following lemma.

LEMMA 2:
(i) Ifi+j <m—c—1and [Gi,Gj] = Gitjyc, then Co(g)N(G; — Gjp1) =D
for every g € G; — Giy;.
(i) f1<i<m-c—2and[Gi,Gm_c_i_1] = Gm_1, then |Cc(g9)| = |Cz(g)|
for every g € G; — Giy1.

Proof: (i) Let ¢ € G; — G4y and = € Gj — Gj41. We have G; = (g,Gi41)
and G; = (z,Gj41)- Since [Gi41,G;] and [G;, Gj41] are subgroups of Giyjict1,
the equality [G;, G;] = Giyjic Yields [g,z] € Giyjtc — Gitjtet1. In particular,
Ca(9)N(G; — Gjp1) = @.

(ii) As we have just proved, [g,z] € Gy —{1} forevery x € Gp—c—i—1—Gm—c—i.
Consequently, r6(gGm-1) = 1 and |C(9)] = 76(9Gm-0IC5(@)] = IC5(@)]
|

Our next result will play an important role when applying inductive methods.

LEMMA 3: Let N be a normal set of G.
(i) If|Cs(g)] = |C7(g)| for every g € N, then V§ = V%.
(i) If N C H and [Cs(9)| = |Ch(g)| for every g € N, then V§ = (1/p)VX.

Proof: (i) From |Cg(g)| = |C7(g)| for g € N we derive that a,(N,G) = 0. On
the other hand, for 2<i<m -1,

1 .
e Hg € N |Cs(g)l =p'}| =

= ai(J_V—, C_j),

1

pm—i

ai(N, G) =

{g € Nl ICz(9)| = p'}]
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since rg{gGm—1) = 1 for g € N implies that N is a union of cosets of Gp—1.
Consequently, V§ = VIC\",—.
(ii) In this case, we just observe that

1 i 1 i
a;(N,G) = pre l{g € N||Ca(g)| =p'} = e l{g € N||Cu(g)| =p'}|
1
= —a; N,H
> (N, H)
holds for 2 <i<m—1. |

THEOREM 4: IfG € F, then

o _ Vet ([p - Um-1)s ife=0;
G- { Vi + ([p° = -1, [0 + Um-a), ife>1
Proof: First of all, we suppose ¢ < m — 4 and see that [G;, Grm—c—i—1] = Gm-1
for 1 <i <m—c—2. In fact, since ¢(G) > ¢+ 1, we have [@,C—Jj] < §i+j+c+1,
whence [G;,Gj] < Gitjtet1 and a(i,j) = 0 for i + j < m — ¢ — 2. From the
relation a(t,j) = a(i — 1,7) — a(i — 1,7 + 1) we derive that all the «(i, j) with
i+ 7 = m —c— 1 are simultaneously zero or non-zero. If they were all zero,
then [G;,G;] < Gitjtetr for all 4,5 > 1, contradicting the definition of ¢(G).
Consequently, a(i,j) # 0 and [G;,G;] = Gitj4c = Gmor for i +j=m-—c—1,
as we wanted to prove.

Now, Lemma 2 yields |Cc(g)] = |C5(g)| for all g € Gy — Gon_o—1, and we
conclude from Lemma 3 that

(1) VE G =VE -

1=-Gme1’
We note that this equality is obviously true when ¢ = m — 2. So it holds for any
GeF.
We have
2) 6= Véi-Gmoest Ve i-Gmos = Ve -Gruey + (07 = Um—1)-

Also, if ¢ =0 then

G G G
(3) Ve=VE o -VE s =VE o —(p-1m),

1=Gm-1

and, if ¢ > 1, taking into account that Gp,_..; < Z(G,),

— G G _ oG c—1
(4) '5 - vG'—l_am—c—l + vam—c—l-am—z - Vél_é-m—c—l + ([p - l]m_2)-
Now, the theorem follows from (1), (2), (3) and (4) |
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Remark: In particular, Theorem 4 yields

, (@) +p O p-1), ife(G)>1;
(@)= {r@ Folp-1), if o(G) = 0;

for G € F. These equalities are proved in another way in [11], Theorem 2.10.

THEOREM 5: Suppose that ¢(G) < m — 4 and [Gy,G;| = Gjqcy1 for all j =
2,...,m—c¢ — 2. Then,

Ve = %{V}, —([P° = Um—2)} + ([p° = U1, [P = per)-

Proof:  First of all, we observe that ¢ > 1. In fact, if ¢ = 0 then [G1,G;] < G4
for 2 < j < m — 3. It follows from our hypotheses that m = 4, in contradiction
with ¢ = 0.

Now, let ¢ € Gy — G2. From [G1,G;] = Gjye41 and Lemma 2, we get
Celg) N (G2 — G—e1) = ©. Since G-y < Z(Gy) < Cglg) and g €
Cg(g) N (G1 — G2), we deduce from Lemma 1 that |Cg(g)] = p°*%2. Then
rg(G1 = G2) = |G1 = G| /p™~°72 = p°*! —p® and VG, g, = (P! = p°leqa).

Next, take 2 € G3 —Gm—c—1. Let j be such that z € G; —G;41. As [Gy, Gj] =
Gjtct1, we have Cg(g) N (G — G2) = ©. Note that £ € Gy — G, -2, since ¢ > 1.
So Cg{z) = Cg,(z) = Cg,(z) = Ch,(z) = Cu(z). From Lemma 3 we derive
that

Vé,—c

m—c—1 m—-c—2"

| lon
= ;ch-cm_c_l = ;VHI-H
Now, since ¢(H) > ¢+ 1, we have H,,_._o < Z(H;) and

Vgl—H = vIH - va—c—2"Hm—2 = VIH - ([pc - l]m—Q)v

m—ec—2
what proves the theorem. |

We observe that, according to Lemma 1.10 of [9], the hypotheses in the previous
theorem hold whenever ¢(H) > ¢ + 2.

THEOREM 6: If G € Gy, then Vi = ([p™~2 = 1];m_1) and r(G) = p™~2 + p? — 1.

THEOREM 7: IfG € Gy, then Vi; = ([p°—1]m—1, [p™ " *=p° s, [P = pcsy0)
and r(G) = p™~* + ptl —pel 4 p? -1,

Proof:  From [9], Theorem 2.2, we know that [G1,G;] = Gjieqq for j > 2. On
the other hand, Vi = ([p™ 3 — 1];m_2), since H € G;. Now it suffices to apply
Theorem 5 to obtain Vy;. [
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THEOREM 8: Let G € G satisfy [G1,G;] = Gjjeq1 for j = 2,...,m —c— 2.
Then, setting ¢/ = ¢(H), we have

;

Ve = ([P = U1, [P = 0" ey ™0 = 05 s, [0 — 9~
[P+ = p%es2)

1]0’-}-27

and r(G) = p™ =0 +p¢ — p“ "2 4 ptl —peml 4 p? — 1.
Proof: Immediate from Theorems 5 and 7. 1

Our next step will be to find the conjugacy vector of a p-group G € G3 having
a jump. With that purpose, in the following lemmas we analyse some of the
conjugacy vectors of the form Vg, _g,,, for such a group. We note that, in this

case, Theorem 2.4 of (9] yields ¢(H) = ¢+ 1 and [G2, G;j] = Gjtc42 for all j > 3.

LEMMA 9: Let G € G3 have a jump at G,. Then Cg(g9) N (Gy — Gyy1) # O for
aIIg € Gy — G5 and

VS, ¢ = {([p”z —p:+;]c+3), if[G1,G1] = Geys or Geya;

([p*° = p*?c4a), i [G1,G1) = Geys.
Proof: In this proof we use the results established in [9], Theorem 2.4, about
the groups G € G3 having a jump.

Let g € G1 — Gs. Since [G1,Gj] = Gjqepr for 3<j<m—c—2and j # v,
we have Cg(g) C (G1— G2)U(Gy — G3)U(Gy — Gyy1) UGpm—c—1. Consequently,
[Ca(g)| < p°*%. On the other hand, if G = G/Gyycyn, then [él,év] =1 and
(@G, < C5(3). Hence [Ca(9)] 2 IC5(@)| 2 p°*.

Suppose [G1,G1] = [G1,G2] = Geys or Gepa. Then [Gy, Gs) = Geyq or Geys,
respectively, and [G2, G2] = Geys. It follows that [g,z] # 1 for all z € G5 — G3,
that is, Cg(9)N(G2—G3) = @. So |Cs(g)| = p°*3 in this case. If [G1, G1] = Geys
then G, < Cz(9), whence |Cg(g)| = p+*. ]

LEMMA 10: Let G € G3 have a jump at G,. Then, the following assertions hold:
(i) fv=m-c~2, ng——GvH = ([p°*! = pYm1)-
(i) f3<v<m-c-2, Vg”_G"+1 = ([p°*! = p% gy [p™ V3 — pm T —
2° + 05 Yms).
Proof: (i) This is clear, since [G1,Gm-c-2) = 1 yields Cg(g) = G; for all
9 € Gy —Gyy1.
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(ii) Suppose that 3 <v <m —c—2. If y € G, — Gy41, we have G3 < Cg(y).
In addition, (G2, Gy] = Guyetz # 1 implies Co(y) N (G2 — G3) = B. So Ce(g) C
(G1 — G2) U G3 and |Ca(g)| = p™ 2 or p™~2. Consider the following two sets:
A={y € Gy - Gus1l ICcly)| = pm_z}
= {y € Gy — Gyy1| Ce(y) N (G1 — Ga) # O}

and
B= {(a:,y) € (Gl - G2) X (Gv - Gv-&-l)‘ [x’y] = 1}'

Counting the elements in B in two different ways, we get

I

Y Ce@)n(Go=Gu)l= Y, ICc(y)N(G1—-G)

z€G1—-G2 y€G,—Guy1

Y 1Ca(y) N (G1 - Ga)|-

yEA

I

()

Since, according to Lemma 9, Cg(x) N (G, — Guy1) # O for all z € Gy — G,
we have [Ca(2) N (Gy — Gys1)l = Ca. (&) = Cvny @) = (p = DICoun (@) =
(01 Grm—e_1] = (p—1)p"*". Similarly, |Ca(y)N(G1—Ga)| = (9—1)|Ca, (¥)] =
(p—1)|G3| = (p—1)p™3 for all y € A. Hence, (5) yields |A] = p+3 — pet2.
Consequently, rg(4) = (p°*% —p™+?)/p? = p*! —p° and re((Gv = Go1) — A4) =
(IGy = Gyl = A /p® = p™ 73 —p™~"~* —p° + p°7!, as required. W

LEMMA 11: Let G € G3 have a jump at G,. Then,

VG — ([pc+l _pc]c+3)a if [GhGl] = Gc+3 or Gc+4;
G2—Cs ([pc+2 _pc+1]c+4)’ if [Gla Gl] = Gc+5'

Proof: Since G has a jump, [G2,G;] = Gjyeq2 for 3 < j <m—c—3. So Cg(g) C
(G1~G2)U(G2—G3)UGm—c—2 for every g € G2 —G3. As g € Ca(g9)N(G2—G3),
we derive that |Cg(g)| = p°*3 or p°*4, according as Cg(g) N (G1 — G2) is empty
or not.

If [G1,G1] = [G1,G2) = Gegs or Geyq, arguing as in Lemma 9 we get
Celg) N (G1 — G,) = @. Otherwise, if [G1, G1] = Geys, setting G = G/Geys we
have G; < Cx(g) and |Ce(g)] = p°**. |

Note that, if G € G3 and ¢(G) = 0, then G € F and m = 6. Since G € G,
we obtain Vi, by applying Theorem 4. So we can suppose ¢(G) > 1 in the next
theorem.
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THEOREM 12: Let G € G3 have a jump at G, and suppose that ¢(G) > 1. Then,
one of the following cases holds:
(l) v =3 and [Gl, Gl] = GC+4. We have

IG = ([Pc - l]m—la [pc+1 - pc—llm—2> b)m—G - Pc]m—3, [PC+2 - pc]c+3)

and 'I'(G) — pm-6 _+_pc+2 _|_pc+1 _ pc _ pc—l +p2 -~1.
(ii) v =3 and [G1,G1] = Geys. We have

v,G = ([Pc - l]m—lv LPC-H - pc~1]m-2v hpm_ﬁ = PJm—3» [pc+3 - pc+1]C+4)

and r(G) = p™6 + p*3 —pc=1 4 p? — 1.
(iii) 4 <v<m—c—2. We have

VIG — ([pc . 1]m—1’ [pc+1 _ pc—l]m_2’ {pm—ﬁ _ pc]m_B’ l‘pc+2 _ pc]C+3)

and r(G) = p™8 4 p=t2 4 petl —pe _pe-l g2 g
(iv) v =m —c— 2. We have

Ve = ([p" = Umer, P70 = 9 imms, [ = p%eas)

and r(G) = p™ ¢ + p+? 4 ptt —p¢ —pTl 4 p? — 1.

Proof: We know that V& __ 4 = ([p° — 1}m—1). So, taking into account
the preceding lemmas, it suffices to determine Vg.-—G.-H for3<i<m-c-2
and 7 # v. For such an i, we have [G1, G;] = Gitcq1 and Cg(g)N(G1—G2) =D
for any ¢ € G; — Giy1. If i = m — ¢ — 2, it follows that Cg(g) = G2 and
Vgi_G‘H = ([p® — p° Ym-2). If i < m —c— 2, then [Ga, Gi] = Gi4c42 whence
Celg) = Cay(9) =Gz and VG, ;.. = (™3 —p™ 4 pz). B

Our next goal is to obtain general bounds for the number of conjugacy classes

of a p-group of maximal class. We need the next lemma.

LeEMMA 13: Suppose that ¢(G) < m — 4. Then, the following formulas hold for
t+j<m-c—-1:

) atis) = S (-4, atti+ b
k=0
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and

m—c—i—j—1 -
M ali)= Y (m A

)a(i-}-k,m—c—i—k—l).
k=0

Proof: For the first formula, proceed by induction on ¢ > 1. To prove (7), use
induction on r = m — ¢ — ¢ — j — 1. In both cases, take into account the relation
a(i,j)=a(i+1,7) + ali,j+ 1). ]

THEOREM 14: Let G € G, with ¢(G) > 1. Then,

PP+ (P - D)((a- 1D 4+ 1) <r(G) <pm P4 p = pT 4 - L

Proof: We first deduce the lower bound for r(G). We argue by induction on
a > 1. The case a = 1 is clear from Theorem 6. Suppose a > 2. Taking into
account that ¢ < m — 4, we can decompose r(G) as follows:

m(G)=716(G - G1) +ra(G1— G2) +rc(G2 — Grm—c-1) + 76 (Gm—c—1)
(8) =716(G1 - G2) +716(Gy — Gmec1) +P° +p* ~ 1.

From |Ca(g)| > |{(9)Gm~c—1| = p°t2 for all g € G1—G3, we deduce re(G1—G3) >
p°™* — p°. On the other hand, 7¢(G2 — Gm—c-1) > (1/p)ru(Ga ~ Gmec_1) =
(1/p)ra(Hy — Hpy—c—2) and

r(H)=p +p* =1+ ry(H; — Hpcoo),

because H,—c—2 < Z(H;). Since a(H) = a — 1, the lower bound holds for r(H),

whence
TG(G‘Z - Gm—c—l) Z pm—2a + (p2 - 1)(0' - 2)p0—1 - pc—l,

bearing in mind that ¢(H) > ¢+ 1. Now, going back to (8) we obtain the desired
bound.

The proof for the upper bound will require quite a different approach. If
¢ =m — 2 the result is evident. Hence, we can suppose ¢ < m — 4 and (8) holds.
It then suffices to show that rg(G1 — Gm_c_1) < p™2 — pc~ L.

We define

uw=min{j > 2| a(l,m — ¢ — j) # 0}.
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By applying (6) we get a(i,m—c—u) = a(l,m—-c—u) # 0 and [G;, Gm—c—u] =
Gr—uti for 1 <i<u—1. Hence Co(g)N(G1~Gy) =@ forall g€ G —
Gm—c—u+1- So CG(g) = Gu and TG'(Gm—c—u - Gm—c—u+1) = Pc - pc—l‘

Also, since [Cg(g)]| < p™~ ! for g € Gm_cut1 — Gm—c—1,

ct+u—2 _ ¢

"‘G(Gm—c—u+1 - Gm—c—l) S p p.

Finally, let g € G; — G4y with 1 <i<m—-c—u—1. If |C5(g)| = p™~? then
g € Z(Gy) and G; < Z(G,). This yields Gp—c—y < Z(G1), which is impossible.
Consequently, [Cg(g)] < p™~2 for all g € G — Gp—c—y and

TG(Gl - Gm—c-—u) < Pm_B - Pc+u_2-

Now,

TG(GI - Gm-c—l) =TG(G1 - Gm—c—u) + TG'(Gm—c—u - Gm—c—u+1)
+ TG(Gm—c—u+l - Gm—c—l) S pm~3 - Pc_l,

as required. |

In the following two theorems we characterize the groups for which the bounds
above are attained. We note that, according to Theorem 6, r(G) equals the lower
bound for G € G;. So it suffices to examine the case a(G) > 2.

THEOREM 15: If¢(G) > 1 and a(G) > 2, the following assertions are equivalent:
(i) r(G) =p™ 2 + (p* — 1)((a~ 1)p*"! +1).
(i) [Gi,Gj] =Giyjpc for1<i<a—-landi<j<m-—-c—i-—1.
(iii) Vi = ([p° = Um-1, [p* = p*7 s 2<i<a-1), [P 72 = p* M,
[p°*! — pflet; (2<i<a)).

Proof: We use induction on a > 2. If a = 2 the result is clear from Theorem 7.

If (i) holds, having a look at the proof of Theorem 14, we easily deduce that
|Calg)| = p°*2 for all g € Gy — Gq, ¢(H) = c+ 1 and that H attains the lower
bound. If [G1,G;] < Gjperz With 2 < j < m—c—2,in G = G/Gjyera we
have |Cx(9)| > I(_&}é]! = p°*3, a contradiction. Hence [G,G;] = Gjio41 for
2 < j < m—c—2. On the other hand, since (i) holds for H, the inductive
hypothesis yields (H;, H;] = Hiijyon)y = Hitjpcqr for 1 <4 < a—2 and
i < j <m—c—i-3. This amounts to [G;,G;] = Giyjpc for 2<i<a-—1and
i< j<m-—c—1i—1. So we have proved that (ii) holds.
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If we now suppose that (ii) is true, Theorem 5 yields

Vi = 2T~ (5~ U} + (6~ U, ¥~ ).

We also deduce that H satisfies (ii) with a(H) = a—1 and ¢(H) = ¢+ 1. So (iii)
holds for H and we obtain the desired value of V.
Finally, it is obvious that (iii) implies (i). 1

THEOREM 16: If ¢(G) > 1, the following assertions are equivalent:
(@) r(G)=p™ 2 +p°—p 1 +p’ - 1L
(i) [Gi,Gj] <Gy fori+j<m—c—1.
(ii) G € G1.
Proof: The equivalence between (ii) and (iii) is obvious. So we proceed to show
that (i) and (iii) are equivalent. If ¢ = m —2 both of them are true. Suppose then
c<m-—4. If G € G then G € F and, according to the remark after Theorem 4,
r(G)=r(G)+p p—-1) =p™ 2 +p°—pt+p? ~ L
Conversely, suppose (i) holds. From the proof of Theorem 14, we must have
|Ca(g)] = p™2 for any g € Gy — G». It follows that a(1,5) = 0 for every
j # m — ¢ — u. In particular, m — ¢ — u < p — 1, since there is at least one
J€{2,...,p—1} such that a(1,5) # 0. Write m—c—u = 2i +e with e € {0,1}.
If u > 3, then (6) yields

0=a(i+1,i+1)= l(—l)k(;)a(l,i-irk%-l)

= (-1 *+el< )a(lm—c—u)

whence a(1l,m —c—u) = 0, a contradiction. Consequently, u =2 and a(1,5) =0
for 2 < j < m—c—3. We deduce from (6) that a(i,j) = 0 and [G;,G,] <
Gitj+c+1 Whenever i+j < m—c—2. Hence ¢(G) > c+1and G € F. Arguing as
in the proof of Theorem 4, we get [C5(g)| = |Ca(g)] = p™ 2 for all g € Gy — Gs.
So G is abelian and G € G. |

2. The conjugacy vector for |G| < p°

In this section, we determine the conjugacy vector for the p-groups of maximal
class of order < p°. If a(G) < 3 and ¢(G) > 1, we obtain Vi directly from
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Theorems 6, 7, 8 or 12. If ¢(G) = 0 then G € F and we can apply Theorem 4,
for which we need to know V7. Also, for |G| = p® and G € G4, we will use ad
hoc arguments which rely on the knowledge of the conjugacy vector of G. So,
in these cases, our method will be recursive. The mere listing of the different
conjugacy vectors for every group order would lead us to the following problem:
when dealing with a specific group G, what is the correct choice of V,G‘ among all
the possible values? For this reason, together with V/,, we will provide a series
of supplementary invariants such as ¢(G), a(G), the jumps G may have and the
commutator [G1, G| = GY, which will precise the structural differences among
groups with different conjugacy vectors. This will help us to identify V'E when
trying to find the conjugacy vector of a group of larger order. Besides, we assign
each group type a number and, together with the above-mentioned invariants,
we give the type numbers of G and H in our lists. In this way, searching through
the tables below, we are able to determine all the commutator subgroups (G;, G;]
for any group G of order < p®. This knowledge will sometimes be useful when

applying recursion.

THEOREM 17: If G has order less than or equal to p°, then one of the cases listed
in Tables 1, 2, 3 and 4 below holds.

Proof: As already mentioned, if a(G) < 3 and ¢(G) > 1, or if G € F, the result
is immediate. We just have to take into account that 2¢ > m — 6 for G € G3
(cf. [10]), whence there do not exist groups belonging to G with |G| = p°® and
c(G)=1.

So we only need to study the case when |G| = p°®, G € G4 and G € F. Then
we have ¢(G) = ¢(G) = 1, H € G3, ¢(H) = 2 and [G3,G4] = Gg. We note that
p > 7 in this case, according to Theorems 3.13 and 3.14 of [1]. Also, since G ¢ F,
there exist 7, such that i + j < 6 and «(7,j) # 0. It follows that a(1,2) and
a(2,3) can not both be zero.

Set a{3,4) =z # 0, a(2,5) = y and «(1,6) = z. From relation (7) we get
a(1,2) = a(1,3) = 2+ 3y + 2z, a(1,4) = 2+ 2y + 2, a(1,5) = 2+ y and
a(2,3) = a(2,4) = y + x. By applying Shepherd’s product formula to the triple
(1,2, 3) we obtain that

(9) (z+3y+2z)(z—y)+2(z+y)=0.

If a(2,3) = 0 then z — y # 0 and we deduce that a(1,2) = 2+ 3y + 2z =0, a
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contradiction. Consequently, a(2,3) = a(2,4) # 0, whence [G2,G3] = Gg and
[Gq, Gy4) = G7.

Now, we consider four cases:

(i) a(1,6) = a(2,5) = 0.

In this case, (9) yields 2z% = 0, which is impossible.

(ii) a(1,6) # 0, a(2,5) = 0.

That is, [G1,Ge] = Gs and [G2,Gs] = 1. From (9) we have 2 = —z. Thus
[G1,G2] = Gy, [G1,G3] = G5 and [Gy,G4) = [G1,G5] = G7. Now, straight-
forward calculations show that G belongs to group type no. 64.

(iii) a(1,6) =0, a(2,5) # 0.

This amounts to [G1,Ge] = 1, [G2, Gs] = Gg. It follows from Lemmas 2 and 3
that V& g = ng_ée =V5-VE o —(p-1}). Also, Cs(g) = Gi for all
g € Gg — Gg, whence VE__q. = ([p* — 1]s).

According to (9), we have (3y + 2z)(x —y) = 0. If £ — y = 0 then a(1,5) # 0
for 2 < j < 5. Thus G corresponds to group type no. 27 and it is easily checked
that V. = (p? - 1,0,p— 1,p*> — 1,p3 — p,0).

If 3y + 22 = 0 then a(1,2) = a(1,3) = 0, @(1,4) # 0 and «(1,5) # 0. Hence
[G1,G2] = Gsye with € = 0 or 1, [G1,G3) = [G1,G4] = G and |Gy, Gs] = Gr.
Since G € Gs, Lemma 9 yields |Cz(g)| = p*** for all g € Gy — G,. Consequently,
Calo)] = p*+* or p*+<. Let

A ={g€Gi~Gy|Cslg) =p**}

and
B ={g€ G- Gyl |Cslg) =p**}.

Setting |A| = A and |B| = A2, we have that

AM+Ae=|G— Gy =p%-p",

/\1 )\2
p4—e p3—5

=rg, (G1—-G2)=(p— D)rg, (51G2).

Taking into account the proof of Theorem 3.4 of [9], it follows that rg, (51G2) =
p3te 4+ p® — p?. Thus

8 _ 9p7 4 pf, e =0 T_ 6 it
Alz{p p +p ife =0; and Azz{p p® ife=0;

pP-p" —pb+p°, ife=1; b —p® ife=1.

From these values we obtain cases 66 and 67 in Table 4.
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(iv) a(1,6) # 0, a(2,5) # 0.

Since [G1, G| = [Ga, Gs] = [G3,Gs] = Gs, we have VE, g, =VE .~ = V..
If either of a(1,3) or a(1,4) equals zero, we derive a contradiction from (9). So
we have cases 68 or 69. 1

In the following tables, for some group types, the entry corresponding to the
jumps of G is G € F. We observe that this implies that all the j € {3,...,m —

¢ — 3} are jumps in that case.

TABLE 1. Conjugacy vector for |G| < p®

No. |G| ¢(G) | a{G) | G no. | H no. | Jump(s) | G Ve

1 | 1 - - - 1 (r*-1)

2 || 3| 1 1 1 - 1 (p® - 1,0)

3 |p°| 1 2 1 1 - G, (p-1,p*-1)

4 |po| 4 | 1 2 2 - 1 (»* - 1,0,0)

5 |p5] 2 | 2 2 2 - Gs | (#*-1,p°-p,0)

6 |5 1 2 3 2 - Gy [(p—1,0"-1,p*—p)

7 {5 O 3 2 3 GeEF |Gy (p—~1,p° -1,0)

8 o 0 3 3 3 GeEF |Gy | (p-1,p-1,p°-1)

TABLE 2. Conjugacy vector for |G| = p”

No. |¢(G) | a(G) | G no. | H no. | Jump(s) | G} Ve

9 | 5 | 1 4 4 - 1 (®* - 1,0,0,0)
10 3 2 4 4 - Gg (P - 1,p* - p?,0,0)
miz2 |2 5 4 - | Gs | 0 -1,8°—pp®—9%0)
12 |1 | 2 6 4 - G| (p-1,p°-1,0,p*-p)
13 1 3 6 5 - Gy |(p-1,p-1,2-1,p°~p)
14 1 3 5 5 Gs Gs (p-1,p* - 1,p° — p,0)
151 | 3 4 5 Gs | Gs (p-1,p* - 1,0,0)
16 1 3 6 5 G, G4 (»*-1,0,p° - 1,0)

TABLE 3. Conjugacy vector for |G| = p®

No. |(G) | a(@) | G no. | H no. | Jump(s) | G} Ve

17 | 6 | 1 9 9 - 1 (®® - 1,0,0,0,0)

18 4§ 2 9 9 - Gr | (@' - 1,p° - °,0,0,0)
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No. |¢(G) | a(G) | G no. | H no. | Jump(s) | G} Vg
19321 10 9 - | Gs| @ -1p"-p%p"—1%0,0)
20 2| 2|1 9 - Gs (r’ - 1,p* - p,0,p* - p*,0)
21 | 1 | 2 | 12 9 - Gy (p—-1,p*-1,0,0,p* —p)
2 | 2| 3| 11 10 - | Gs| @ -1,p2—p,p*—p,p°—p%,0)
23 2 3 10 10 Gs Gs P* - 1,9° - p,p* - p%,0,0)
24 2 3 9 10 G3 Gy (»* - 1,9° = p,0,0,0)
25 | 2 | 3 | 11| 10 Gy |Gs (p* -1,0,p" - p,0,0)
26 | 1] 3| 12| 10 - |G| (0-1,9*-1,p°-p,0,p>—p)
27 | 1| 3| 13| 1 - | Gs|p-1,p-1,0"~1,0" —p,p* - p)
28 | 1| 3| 14| 11 G:s |Gs| (p—1,9°-1,p"~p,p®—p,0)
29 | 1 3 15 11 Gs Gs (p—1,p* - 1,p* — p,0,0)
30| 1] 3| 16| n Gi |Gi| (p-1,1"-1,02—p,p°—p,0)
31 | 1] 3| 13| 1 G |Gs (p* -1,0,p —1,5° — p,0)
32 | 0| 4 9 15 | GeF |Gy (p-1,p°-1,0,0,0)
33| 0 (4 10| 15 |GeF |Gs (p-1,p°—1,p* — 1%,0,0)
34 1 0 4 11 15 | GeF |Gs | (p-1,p>-1,9°—p,p° —p?,0)
35 | 0| 4 | 12| 15 |GeF |G| (p-1,p-1,pP°-1,0,p*—p)
36 | o | 4 13 14 | GeF |Gyl (p-1,p-1,p—1,p*-1,p* —p)
37 0 4 14 14 | GEF | Gs (p—-1,p-1,p° - 1,p° - p,0)
38 ] 0| 4| 15 14 |GeF |Gs (p-1,p-1,p* - 1,0,0)
39 0 4 16 14 | GeF |Gy (p-1,p*-1,0,° — 1,0)
TABLE 4. Conjugacy vector for |G| = p®
No. |¢(G) |a(G) | G no. | H no. | Jump(s) | G} Ve
40 7 1 17 17 - 1 (» -1,0,0,0,0,0)
4 |5 | 2|17 | 17 - | Gs (r® - 1,98 - p,0,0,0,0)
42 4 2 18 17 - Gy (»* - 1,9° - p°,9° - p*,0,0,0)
43 | 3 | 2| 19| 17 - | Gs| @ -1,0°-p%0,p*-1%0,0)
44 | 2 | 2 | 20 | 17 - |Gs (® - 1,9° -p,0,0,p° — p%,0)
45 | 1| 2| 2| 17 - |G (p-1,p°-1,0,0,0,p* - p)
46 | 3 3 19 18 - Gs | (0® —1,p° - p°,p* — p*,p* - $°,0,0)
47 | 3 | 3 | 18 | 18 Gs | Gr| (P -1p"-1%0°-p%0,00)




250 A. VERA-LOPEZ AND G. A. FERNANDEZ-ALCOBER Isr. J. Math.

TABLE 4 (cont.). Conjugacy vector for |G| = p°

No. | ¢(G) | a(G) | G no. | H no. | Jump(s) | G Ve

48 | 3 | 3 | 17 | 18 Gs | Gs (»® - 1,p° - p%,0,0,0,0)

49 | 3 | 3 ] 19| 18 Gy | Gs (p* —1,0,p° — p2,0,0,0)

50 | 2| 3 | 20 | 18 - |G| -1, —pp*-p*.0,p°~p%0)
5t (2 | 3 | 22 | 19 - |G |[(®-1,0—pp®—p 0 - %P - % 0)
52 1 2 | 3 | 23| 19 Gs | Gs| (—-1,p°-p,p°-p%p'—p%0,0)
53 | 2 | 3 | 24 | 19 Gs | Gr (»® - 1,p* - p,p* - p?,0,0,0)

54 | 2 | 3 | 25 | 19 Gy | Gs| (P -1,0°—p,p°-p%p"-p%0,0)
55 | 2 | 3 | 22 | 19 Gs | Gs (p® - 1,0,p° - p,p* — p*,0,0)

56 | 1| 4 | 17| 24 | GeF |Gs (p—-1,p° —1,0,0,0,0)

57 1 4 18 24 | GeF | Gy (p-1,p* - 1,p° - p%,0,0,0)

58 1 4 19 24 | GEF | Gs (p-1,p° - 1,p* - p*,p* - p°,0,0)
50 | 1| 4 | 2 | 24 | GeF |Gs (p-1,p° —1,p* - p,0,p* - p?,0)
60 | 1 4 22 23 | GeF [ Gs | (p-1,p2-1,0> —p,p* —p,p* — p°,0)
61 1 4 23 23 | GeF | Gg (p-1,p° - 1,p° - p,p* - p%,0,0)
62 1 4 24 23 GeF |G {(p-1,p>-1,p° —p,0,0,0)

63 | 1 | 4 | 25 | 23 | GeF |Gs (p-1,p° - 1,0,p* — p,0,0)

64 | 1 | 4 | 30 | 25 Gi |G| w-1,2-1,0° —p.p* — p,p* — 12,0)
65 | 1 | 4 | 27 | 22 Gs |G (»® -1,0,p—1,p° - 1,p° — p,0)
66 | 1 | 4 | 28 | 22 | G5,Ge | Gs | (9°—1,0,8>—1,p° —p,p® — p?,0)
67 | 1 | 4 | 20 | 22 | G5,Gs | Gs #* -1,0,p° - 1,p* —p%,0,0)

68 | 1 | 4 | 27 | 22 - |G |-1p-1,p-1,p>-1,p* = p,p* - p)
69 | 1| 4 | 31 | 22 Gs | Ga (p-1,p°-1,0,p° - 1,p° - p,0)

3. Examples

We end this paper providing two examples which show that the bounds for 7(G)
established in Theorem 14 are actually attained. Also, we give a general example
of a p-group of maximal class of order p° from which it can be derived the
existence of groups for every type listed in Table 4, by just giving values to the

parameters in terms of which the group is presented.

Example 1: Let p > 5be a prime. For5<m <pandce€ {1,...,m—-4}U
{m — 2}, ¢ < p—m+ 2, B.A. Panferov constructs in [5] a p-group of maximal
class G of order p™, degree of commutativity ¢ and such that [G;, G;] = Giyj+c
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for 1 <3 < j. It follows that this group satisfies condition (ii) of Theorem 15
with a = [(m — ¢)/2].

Example 2: Let p > 3 be a prime number and ¢ > 1 a fixed integer. Then, for
every m = ¢ {mod 2) satisfying ¢+ 4 <m < ¢+ p+ 1, there exists a p-group of
maximal class G such that |G| = p™, ¢(G) = c and G € G;.

In fact, writing m = 2n + ¢, we can present this group as G = (s,s;] ¢ > 1)
subject to the following relations:

R} s;=1fori>m.

(R2) s = 1 and [[224s0) = 1 gori > 1.

(R3) [si,8] = 8541 for i > 1 and [s;,55] = s for1<j <.
We note that we work with generalized binomial coefficients, that is, for any
r,s €L,

CIV G TGty

m—1

r(r—l)...(r—s+1)’ s> 1;
Ty _ s!
<8>_ 1, if s = 0;

0, if s <0.

In particular, (Z) =(0ifand only if s < 0or 0 <7 < s. Also, (r - Z) =0or
r—
1, according as r < sor r > s.

Example 3: Suppose p > 11 is a prime. Let a, 3,7, 6, ¢, A, 1, v and 7 be arbitrary
elements of the field F, subject to the condition 7(A + 2a) = 3A2. Then, the

following relations define a p-group of maximal class G = (s, sy,..., sg) of order

p:

(R1) s» =s? = 1for 1 <i<8.
sy, HIZILKT,
(R2) [si,5] = {1, if i = 8.
(R3) [s2,81] = 4555637387 (s, 1] = 5§55~ As7_“_O‘)‘sg_"+(°‘+m“”’\)‘°‘“,
[s4,81) = g~ A ﬁ B—2X sV 2utrta(r— 2,\2 [35,31]——-3?_2’\sg_2“_3’\+2f
§&~ 3/\+T
8 .

(R4) [s3,80] = sdshs, [s4,82] =s3sh™", [s5,82] = sé\"T

(R5) [84,83] = Sg.

(R6) The rest of the commutator relations are trivial.
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